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Space extension for explicit ODEs is considering introduction of new equations to
the equation set where the new unknowns are functionally dependent on the original
unknowns. The purpose is to convert the ODE set into a form that has purely second
degree multinomial right hand side functions. This is a necessary preprocessing step
for certain series solution methods. Multinomial ODEs can be converted to ODEs
with purely second degree terms through space extension. In a previous work, it is
shown that the space extension with the smallest number of new unknowns can be
found by a complete search. However, the complete search is not computationally
efficient. In this paper, a computationally efficient search (beam search) is utilized
but optimality (smallest number of new unknowns) is not guaranteed. The numerical
experiments show that beam search is powerful in finding a useful space extension even
for multinomials with relatively higher degrees.
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Introduction

Explicit ordinary differential equations with multinomial right hand side functions appear in
different fields. Although discretization methods dominate in many engineering applications,
series expansion methods are also promising. Probabilistic evolution theory provides a series
expansion method for ODE sets where the right hand side functions contain only second
degree terms [1–11]. Article [9] is a detailed survey of probabilistic evolution theory.

To make the method applicable to a diverse set of problems, it is necessary to be able to
convert an ODE set with multinomial right hand sides to an ODE set with purely second
degree multinomial right hand sides. Conicalization means converting to second degree mul-
tinomial right hand side functions. This is done through space extension. For a long time,
space extension was performed through trial and error to be able to transform the ODE into
a asuitable form. Recently, it is shown that branch and bound search may be utilized to find
the space extension with the smallest number of new function definitions (the optimal space
extension) [10, 12]. However, such a complete search is not efficient. In this paper, beam
search is proposed as a way to search for the optimal space extension. The implementation
details and illustrative examples are also given in the following sections.
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1. Space extension concept

Space extension is used in order to form new functions that are functionally dependent on
the original functions but linearly independent from them. We form an ordinary differential
equation on the new function and forget its functional dependence for a moment. This is
done incrementally until the ODE set satisfies the desired characteristics. The new ODE set
is larger than the original one, but represents exactly the same system. If the new ODE set
is easier to solve, this means that the space extension served its purpose.

The concept is very useful for multinomial functions, but its use is not limited to multi-
nomials. If the functions can form a closed set under a certain operator, then space extension
can be directly used. Therefore, if the right hand sides also contain negative integer powers,
exponentials or trigonometric functions in a certain way, the ideas here may be adapted to
those cases also, but we will leave that for the future.

The functions whose derivatives appear on the left hand sides of the equations, can form
a Hilbert space. The span of the Hilbert space is determined by the basis set formed by the
functions whose derivatives appear on the left hand side. By appending new equations to
the ODE set, it is always possible to go from an ODE set with multinomial right hand side
functions to an ODE set with purely second degree multinomial right hand side functions.
Appending an equation to the ODE set is performed through forming an ODE for a function
that is linearly independent from the original left hand side functions. Therefore, append-
ing an equation is also appending a new basis function to the Hilbert space, consequently
“extending” the space.

1.1. Purely second degree right hand side functions

Our focus is on the original ODE sets with multinomial right hand side functions, and
the purpose is to convert this set into a set with purely second degree right hand side
functions. From this point on, by the term space extension, we will mean what is described
in the previous sentence even though the space extension is a more general concept. More
specifically, we will consider the case where the original ODE set consists of two equations.
The reason for trying to obtain purely second degree right hand side functions is that, when
we have such a structure, a series solution can easily be obtained. We will not get into
the details of obtaining the series solution. It is explained in detail in different papers.
Especially, [9] is a detailed survey on the subject.

All papers except [10] consider two consecutive steps for this task: space extension and
constancy adding space extension. [10] showed this is not necessary because constancy adding
space extension is also included in space extension. In order to explain why this is so, it
is necessary to consider the constant function that has the value of 1 everywhere. We can
call this function as 𝑢(0,0). This function is also the product of the zeroth power of one of
the original functions and the zeroth power of the other one (considering that we start out
with two unknowns). Therefore it is functionally dependent on the original functions. Then,
we can forget the functional dependence for a moment and write an ODE for this function.
Obviously, the right hand side will not have any terms. The right hand side will be the 0
function. Although 0 function does not seem to be a purely second degree term, it does not
cause any problem (it is a purely second degree term with 0 as coefficient). We introduce this
function to the ODE set when necessary. This means, we will introduce it when it appears
on the right hand side of one of the ODEs. Therefore, what is performed for constancy
adding space extension is exactly the same with what is performed for space extension.
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1.2. Searching for space extension

Here, we will not repeat the concepts from [10], but it is important to emphasize the type
of the search for the space extension. In [10], we proposed branch-and-bound search. This
is a complete search. It is not possible to miss the optimal space extension. At each step
all possible partitionings of the powers are analyzed, therefore nothing is left out. Also,
people doing space extension by hand know that it is possible to make a space extension
and end up with an ODE set worse than the original one (further away from being close
to having purely second degree right hand side functions), and continue performing space
extension infinitely without getting any result. This does not happen in branch-and-bound
because branch-and-bound is a complete search. The score of the node will always take you
to the optimal node. If the algorithm starts going in a bad direction, the score will suffer,
and therefore the algorithm will continue with the better option. Of course, the admissible
heuristic is the main component of how the algorithm determines what is better.

Instead of branch-and-bound search, breadth-first search can also be utilized. Although
not powerful as branch-and-bound, breadth-first search does not need a score calculation
and reordering at each step. On the other hand, depth-first search can cause problems.
Depth-first search can lead to infinity problem described in the previous paragraph.

Although branch-and-bound search is very powerful and always gives the optimal space
extension, it is not scalable. The number of necessary evaluations grows very fast when the
powers of the right hand sides of the original ODEs grow. The tree becomes huge almost
immediately. In this paper, we want to use a search that is easier to implement and requires
less CPU and memory usage. In order to achieve that, we also make a compromise: the
search does not need to always give the optimal solution. If it gives the optimal solution
most of the time, and gives a solution that is very close to the optimal solution in the other
times, it will be considered good enough.

1.3. Beam search

General information about beam search can be found in [13]. Beam search has been uti-
lized with success in different domains including scheduling in supply chain models [14, 15],
translation of text from one language to another [16, 17], speech recognition [18, 19] and
computational biology [20].

In our application, we focus on beam search with branching factor 𝑤 as 1. This simply
means that at each step we will do the best space extension and prune the rest of the tree.
Therefore we will be moving linearly, beaming our way to the space extension. The heuristic
to be used is to always partition in half, because that is the fastest way to decrease the
powers. If the number is even, partitioning in half is well-defined. If the number is odd,
there are two options: the number (2𝑛−1) can be partitioned as (𝑛+(𝑛−1)) or ((𝑛−1)+𝑛).
It is important to see this through an example.

Example 1.1. Assume that we have 𝑞3𝑝3 as an additive right hand side term. This is a
term with degree 6. Since the degree of the term is higher than 2, partitioning is necessary.
There are eight ways to partition. They are as follows separated by the comma symbol:
(𝑞0𝑝0)×(𝑞3𝑝3), (𝑞0𝑝1)×(𝑞3𝑝2), (𝑞0𝑝2)×(𝑞3𝑝1), (𝑞0𝑝3)×(𝑞3𝑝0), (𝑞1𝑝0)×(𝑞2𝑝3), (𝑞1𝑝1)×(𝑞2𝑝2),
(𝑞1𝑝2) × (𝑞2𝑝1), (𝑞1𝑝3) × (𝑞2𝑝0). For any of these partitionings, if one momentarily forgets
the meaning in the parenthesized expressions and considers each parenthesized expression
as a function, all of these eight ways produce purely second degree terms. The heuristic
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advises us to partition in the middle. Due to commutativity of multiplication, we do not
have second power of 𝑞 on the left side of the product. For 𝑝, on the other hand, we do
have the second power of 𝑝 on the left side of the product. So, partitioning in the middle,
we can have (𝑞1𝑝1)× (𝑞2𝑝2) or (𝑞1𝑝2)× (𝑞2𝑝1). We observed that (𝑞1𝑝1)× (𝑞2𝑝2) is a better
choice. However, if we were partitioning 𝑞1𝑝1, we would prefer (𝑞0𝑝1) × (𝑞1𝑝0) instead of
(𝑞0𝑝0)× (𝑞1𝑝1) because we would already have (𝑞0𝑝1) and (𝑞1𝑝0), therefore, not causing the
necessity of further space extension for these functions.

The heuristic is as follows. If the powers of the two functions are 1, avoid having the same
power for 𝑞 and 𝑝 in the same function. Therefore 𝑞1𝑝1 becomes (𝑞0𝑝1)× (𝑞1𝑝0). Otherwise,
always make the power in the left multiplicand less than or equal to the corresponding one
in the right multiplicand. To put it in other words, we have 𝑞𝑘𝑝ℓ such that (𝑘 ̸= 1)∨ (𝑙 ̸= 1).
Then the partitioning is

(︀
𝑞⌊𝑘/2⌋𝑝⌊ℓ/2⌋

)︀
×
(︀
𝑞𝑘−⌊𝑘/2⌋𝑝ℓ−⌊ℓ/2⌋)︀.

2. Problem representation and solution

2.1. Representing the ODE set

We represent the ODE set by a vector. First, use the heuristic to partition the right hand
sides (without space extension). Then fill the vector with the powers of the functions. Each
sequence of 6 integers in the vector corresponds to a single right hand side term. Each pair
within the 6 integers corresponds to the powers of the original functions. Of these 6 integers,
the first pair has the powers for the left hand side, the middle pair has the powers for the
first multiplicand of the right hand side term and the right pair has the powers for the second
multiplicand of the right hand side term.

Explicit ODE with two unknowns may be represented as

.
𝑥(𝑡) = 𝛼1𝑥(𝑡)

𝑘1𝑦(𝑡)ℓ1 + 𝛼2𝑥(𝑡)
𝑘2𝑦(𝑡)ℓ2 + · · ·+ 𝛼𝑚𝑥(𝑡)

𝑘𝑚𝑦(𝑡)ℓ𝑚 ,
.
𝑦(𝑡) = 𝛼𝑚+1𝑥(𝑡)

𝑘𝑚+1𝑦(𝑡)ℓ𝑚+1 + 𝛼𝑚+2𝑥(𝑡)
𝑘𝑚+2𝑦(𝑡)ℓ𝑚+2 + · · ·+ 𝛼𝑚+𝑛𝑥(𝑡)

𝑘𝑚+𝑛𝑦(𝑡)ℓ𝑚+𝑛 ,

𝛼𝑖 ̸= 0, 𝑘𝑖, ℓ𝑖 ∈ N, 𝑖 = 1, . . . , (𝑚+ 𝑛),

(1)

where the same (𝑘𝑖, ℓ𝑖) pair of an additive term cannot appear more than once within the
same equation. Let

𝑢(𝑘,𝑙) ≡ 𝑥(𝑡)𝑘𝑦(𝑡)ℓ.

Then (1) can be written as

.
𝑢(1,0) = 𝛼1𝑢

(𝑘1,ℓ1) + 𝛼2𝑢
(𝑘2,ℓ2) + · · ·+ 𝛼𝑚𝑢

(𝑘𝑚,ℓ𝑚),
.
𝑢(0,1) = 𝛼𝑚+1𝑢

(𝑘𝑚+1,ℓ𝑚+1) + 𝛼𝑚+2𝑢
(𝑘𝑚+2,ℓ𝑚+2) + · · ·+ 𝛼𝑚+𝑛𝑢

(𝑘𝑚+𝑛,ℓ𝑚+𝑛)

and the pairs on the powers of the right hand side functions can be binary partitioned using
the heuristic to form

.
𝑢(1,0) = 𝛼1𝑢

(𝑎1,𝑏1)𝑢(𝑐1,𝑑1) + 𝛼2𝑢
(𝑎2,𝑏2)𝑢(𝑐2,𝑑2) + · · ·+ 𝛼𝑚𝑢

(𝑎𝑚,𝑏𝑚)𝑢(𝑐𝑚,𝑑𝑚),
.
𝑢(0,1) = 𝛼𝑚+1𝑢

(𝑎𝑚+1,𝑏𝑚+1)𝑢(𝑐𝑚+1,𝑑𝑚+1) + 𝛼𝑚+2𝑢
(𝑎𝑚+2,𝑏𝑚+2)𝑢(𝑐𝑚+2,𝑑𝑚+2)+

+ · · ·+ 𝛼𝑚+𝑛𝑢
(𝑎𝑚+𝑛,𝑏𝑚+𝑛)𝑢(𝑐𝑚+𝑛,𝑑𝑚+𝑛). (2)

The ODE in (2) can be represented by Table 1, where P stands for pair and Ind. stands for
index. Each row has an index and a sextuple. Left pair is the pair that shows the left hand
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T a b l e 1. ODE set before space extension

Ind.
ODE

Left P Middle P Right P

1 1, 0 𝑎1, 𝑏1 𝑐1, 𝑑1
2 1, 0 𝑎2, 𝑏2 𝑐2, 𝑑2
...

...
...

...
𝑚 1, 0 𝑎𝑚, 𝑏𝑚 𝑐𝑚, 𝑑𝑚
𝑚+ 1 0, 1 𝑎𝑚+1, 𝑏𝑚+1 𝑐𝑚+1, 𝑑𝑚+1

𝑚+ 2 0, 1 𝑎𝑚+2, 𝑏𝑚+2 𝑐𝑚+2, 𝑑𝑚+2
...

...
...

...
𝑚+ 𝑛 0, 1 𝑎𝑚+𝑛, 𝑏𝑚+𝑛 𝑐𝑚+𝑛, 𝑑𝑚+𝑛

side. The middle pair and the right pair show the multiplicands of a single additive term on
the right hand side.

The sextuples in each row of Table 1 can be put one by one into a vector. The vector
that represents the ODE will then be [1, 0, 𝑎1, 𝑏1, 𝑐1, 𝑑1, 1, 0, 𝑎2, 𝑏2, 𝑐2, 𝑑2, . . ., 1, 0, 𝑎𝑚, 𝑏𝑚,
𝑐𝑚, 𝑑𝑚, 0, 1, 𝑎𝑚+1, 𝑏𝑚+1, 𝑐𝑚+1, 𝑑𝑚+1, 0, 1, 𝑎𝑚+2, 𝑏𝑚+2, 𝑐𝑚+2, 𝑑𝑚+2, . . ., 0, 1, 𝑎𝑚+𝑛, 𝑏𝑚+𝑛,
𝑐𝑚+𝑛, 𝑑𝑚+𝑛]. We also need another vector whose size is (1/6) of this vector. The vector is
[𝛼1, . . . , 𝛼𝑚, . . . , 𝛼𝑚+𝑛] and stores the coefficients.

Example 2.1. The van der Pol ODE is given as

.
𝑥(𝑡) = 𝜇𝑥− 𝜇

3
𝑥3 − 𝜇𝑦, 𝑥(0) = 𝑥0,

.
𝑦(𝑡) =

1

𝜇
𝑥, 𝑦(0) = 𝑦0.

(3)

Let 𝑥(𝑡) and 𝑦(𝑡) be the first and the second function respectively. Let

𝑢(𝑘,ℓ) ≡ 𝑥𝑘𝑦ℓ

without showing the 𝑡-dependence explicitly for simplicity. Then, (3) can be rewritten as

.
𝑢(1,0) = 𝜇𝑢(1,0) − 𝜇

3
𝑢(3,0) − 𝜇𝑢(0,1),

.
𝑢(0,1) =

1

𝜇
𝑢(1,0).

(4)

Using the heuristic, (4) becomes

.
𝑢(1,0) = 𝜇𝑢(0,0)𝑢(1,0) − 𝜇

3
𝑢(1,0)𝑢(2,0) − 𝜇𝑢(0,0)𝑢(0,1),

.
𝑢(0,1) =

1

𝜇
𝑢(0,0)𝑢(1,0),

and for obtaining the vector representation of the ODE, the equations and the right hand side
functions are taken into account in the order they appear. Then the vector representation
of the van der Pol ODE is [1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 2, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0].
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Example 2.2. The ODE set for the classical quartic anharmonic oscillator is given as

.
𝑞(𝑡) =

1

𝜇
𝑝(𝑡), 𝑞(0) = 𝑞0,

.
𝑝(𝑡) = −𝑘1𝑞(𝑡)− 𝑘2𝑞(𝑡)

3, 𝑝(0) = 𝑝0.

(5)

Let 𝑞(𝑡) and 𝑝(𝑡) be the first and the second function respectively. Let

𝑢(𝑘,ℓ) ≡ 𝑞𝑘𝑝ℓ

without showing the 𝑡-dependence explicitly for simplicity. Then, (5) can be rewritten as

.
𝑢(1,0) =

1

𝜇
𝑢(0,1),

.
𝑢(0,1) = −𝑘1𝑢

(1,0) − 𝑘2𝑢
(3,0).

(6)

Using the heuristic, (6) becomes

.
𝑢(1,0) =

1

𝜇
𝑢(0,0)𝑢(0,1),

.
𝑢(0,1) = −𝑘1𝑢

(0,0)𝑢(1,0) − 𝑘2𝑢
(1,0)𝑢(2,0)

and for obtaining the vector representation of the ODE, the equations and the right hand side
functions are taken into account in the order they appear. Then the vector representation
for the classical quartic anharmonic oscillator is [1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 2, 0].

2.2. Extending the space

Starting out with one equation. The simplest case is to start with one ODE with
constant right hand side function. The purpose is to obtain second degree multinomials on
the right hand side through space extension. Let

.
𝑢(ℓ)(𝑡) ≡ 𝑥(𝑡)ℓ.

Then, ODE with constant right hand side is

.
𝑢(1) = 𝑐,

which can also be written as
.
𝑢(1) = 𝑐𝑢(0)𝑢(0).

The space can be extended for 𝑢(0) giving

.
𝑢(0) = 0.

Constant function 0 can be considered as a second degree multinomial with 0 as coefficient,
because

.
𝑢(0) = 0𝑢(0)𝑢(0).

At this point, space extension is complete. All right hand side functions also appear on the
left hand side.
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The next simple case is to start with one ODE with polynomial right hand side function.
The purpose is to obtain second degree multinomials on the right hand side through space
extension. The ODE with polynomial (to be more precise, it is a monomial) right hand
side is .

𝑢(1)(𝑡) = 𝑢(ℓ1),

where ℓ1 is a positive integer. The first case to investigate is where ℓ1 = 1. Then, the
equation is .

𝑢(1) = 𝑢(1).

Here, the right hand side is first degree. Since we need purely second degree right hand side
we can rewrite as .

𝑢(1) = 𝑢(0)𝑢(1),
.
𝑢(0) = 0,

thus appending a new ODE to the set. The integer 1 is partitioned as (0 + 1). After the
operation, purely second degree structure is obtained. Although constant function 0 is not
a second degree multinomial, it can be considered like a second degree multinomial with 0
as coefficient. Therefore, it is consistent with the structure.

The next case is where ℓ1 = 2. Therefore

.
𝑢(1) = 𝑢(2)

is under consideration. Then we can partition as (0 + 2) or (1 + 1). Partitioning as (1 + 1)
gives .

𝑢(1) = 𝑢(1)𝑢(1)

and solves the problem by yielding second degree term on the right hand side.
The next case is where ℓ1 = 3. Then

.
𝑢(1) = 𝑢(3)

is under consideration. We can partition as (0 + 3) or as (1 + 2). We choose (1 + 2) giving

.
𝑢(1) = 𝑢(1)𝑢(2),

where we also need to form an ODE for 𝑢(2). Using differentiation we can write the equation
to append as .

𝑢(2) = 2𝑢(1)𝑢(3),

where 𝑢(3) also appears. We can repartition the right hand side of the above equation giving

.
𝑢(2) = 2𝑢(2)𝑢(2)

providing purely second degree right hand side terms.
The next case is where ℓ1 = 4. Then

.
𝑢(1) = 𝑢(4)

is under consideration. Possible partitionings are (0 + 4), (1 + 3) and (2 + 2). We choose
(2 + 2) giving

.
𝑢(1) = 𝑢(2)𝑢(2),

where we need to append an equation for 𝑢(2). Using differentiation
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.
𝑢(2) = 2𝑢(1)𝑢(4)

is obtained. We can repartition to get

.
𝑢(2) = 2𝑢(2)𝑢(3) (7)

therefore giving us the third power. We need to append an equation for 𝑢(3). It is

.
𝑢(3) = 3𝑢(2)𝑢(4),

where the right hand side can be rewritten as

.
𝑢(3) = 3𝑢(3)𝑢(3),

where the total power of five on the right hand side of (7) gave us two multiplicands of third
power here. Also, purely second degree terms on the right hand side are also obtained.

Let us also exemplify a bad way to partition. Consider again

.
𝑢(1) = 𝑢(4)

and rewrite it as
.
𝑢(1) = 𝑢(0)𝑢(4),

where the right hand side is purely second degree. Now we need to append an equation for
both 𝑢(0) and 𝑢(4). Thus, such partitioning does not provide any advantage. Appending the
equation

.
𝑢(4) = 4𝑢(3)𝑢(4) (8)

we can observe that we have 𝑢(3) and 𝑢(4) on the right hand side. This is not a good
partitioning considering that we also need to append an equation for 𝑢(0) and we have
appended an equation for 𝑢(4) without the need for it.

Also, from (8), we can continue stubbornly to rewrite as

.
𝑢(4) = 4𝑢(0)𝑢(7)

and then try to append an equation for 𝑢(7). The problem of partitioning 𝑢(4) has become
the problem of partitioning 𝑢(7). The form has become more distant to having purely second
degree multinomial right hand sides.

Starting out with two equations. Let 𝑥(𝑡) and 𝑦(𝑡) be the first and the second
function respectively. Also let

𝑢(ℓ1,ℓ2)(𝑡) ≡ 𝑥(𝑡)ℓ1𝑦(𝑡)ℓ2 , ℓ1, ℓ2 ∈ N.

Then, the general form of the original ODE set is

.
𝑢(1,0)(𝑡) =

∞∑︁
ℓ1=0

∞∑︁
ℓ2=0

𝑎
(ℓ1,ℓ2)
1 𝑢(ℓ1,ℓ2)(𝑡),

.
𝑢(0,1)(𝑡) =

∞∑︁
ℓ1=0

∞∑︁
ℓ2=0

𝑎
(ℓ1,ℓ2)
2 𝑢(ℓ1,ℓ2)(𝑡).
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The expectation is that only a small number of 𝑎 coefficients on the right hand side are
nonzero and the others are zero. We have here multinomial right hand side functions. Using
the heuristic, each additive term on the right hand side will be written as the product of two
multinomials. If these multinomials do not exist on the left hand side, a new ODE will be
obtained for them using

.
𝑢(ℓ1,ℓ2)(𝑡) = ℓ1𝑢

(ℓ1−1,ℓ2)(𝑡)
∞∑︁

𝑗1=0

∞∑︁
𝑗2=0

𝑎
(𝑗1,𝑗2)
1 𝑢(𝑗1,𝑗2)(𝑡) + ℓ2𝑢

(ℓ1,ℓ2−1)(𝑡)
∞∑︁

𝑗1=0

∞∑︁
𝑗2=0

𝑎
(𝑗1,𝑗2)
2 𝑢(𝑗1,𝑗2)(𝑡) (9)

and appended to the set. The process will be continued for all of the additive terms for all
of the equations in the set. At some point, all of the multinomials on the right hand side
will also appear on the left hand side and the space extension will be complete.

The right hand side of the equation is the zero function when the left hand side is a
constant. This corresponds to constancy adding space extension. For this situation, the pairs
for the right hand side should not contain anything because there is nothing to partition.
As a notation convention, we show these right hand side pairs with all 0 values.

Example 2.3. The ODE set for van der Pol ODE is [1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 2, 0, 1, 0,
0, 0, 0, 1, 0, 1, 0, 0, 1, 0]. The space extension is shown by Table 2. In the table P. stands
for pair. The first four rows of the table is the original ODE set. The other rows are filled
in incrementally. The right hand sides (middle pairs and right pairs) are analyzed one by
one. The first right hand side pair (first row middle pair) is 0, 0. It does not exist as left
pair, therefore space should be extended for it. The fifth row is written adding constancy to
the ODE set. The right pair on the first row already exists as left pair. The middle pair on
second row already exists as left pair. The right pair on second row does not exist as left
pair, therefore space should be extended for it. Observe (9). The middle pairs and right pairs
of the first four rows take part in all space extensions. Using the heuristic, repartitioning
will be performed. Observe row 6. We know that we want to write an equation for 2, 0.
Therefore that is our left pair. Then decrement the first number of the left pair by 1 and
add it to the sum of the middle pair and the right pair of row 1. The result would be 2, 0.
Using the heuristic, partition it and write the middle pair and right pair of row 6. Then,
go to row 7 and write your left pair. It is still 2, 0 because we have not finished working
on it. Decrement the first number of the left pair of row 7 by 1 and add it to the sum of
the middle pair and the right pair of row 2. The result would be 4, 0. Using the heuristic,
partition it and write the middle pair and right pair of row 7. Then, go to row 8 and write
your left pair. It is still 2, 0 because we have not finished working on it. Decrement the
first number of the left pair of row 8 by 1 and add it to the sum of the middle pair and the
right pair of row 3. The result would be 1, 1. Using the heuristic, partition it and write the
middle pair and right pair of row 8. Then we need to decrement the right number of 2, 0.
However, it is already 0 and therefore cannot be decremented. So, the equation for 2, 0 is
complete. Also, now, all the middle pairs and right pairs also exist as a left pair. Therefore,
the space extension is complete. There are 4 unique left pairs which means that the new
ODE set has 4 equations in total. This space extension is also the optimal space extension.
The branch-and-bound search also yields this particular space extension with 4 equations.

Example 2.4. The ODE set for classical quartic anharmonic oscillator is [1, 0, 0, 0, 0, 1, 0,
1, 0, 0, 1, 0, 0, 1, 1, 0, 2, 0]. The space extension is shown by Table 3. In the table P stands



Beam search for space extension in explicit ordinary differential . . . 109

T a b l e 2. Space extension of van der Pol
ODE

Ind.
ODE

Left P Middle P Right P

1 1, 0 0, 0 1, 0
2 1, 0 1, 0 2, 0
3 1, 0 0, 0 0, 1
4 0, 1 0, 0 1, 0
5 0, 0 0, 0 0, 0
6 2, 0 1, 0 1, 0
7 2, 0 2, 0 2, 0
8 2, 0 0, 1 1, 0

T a b l e 3. Space extension of classical quartic
anharmonic oscillator

Ind.
ODE

Left P Middle P Right P

1 1, 0 0, 0 0, 1
2 0, 1 0, 0 1, 0
3 0, 1 1, 0 2, 0
4 0, 0 0, 0 0, 0
5 2, 0 0, 1 1, 0

for pair. The first four rows of the table is the original ODE set. The other rows are filled
in incrementally. The right hand sides (middle pairs and right pairs) are analyzed one by
one. The first right hand side pair (first row middle pair) is 0, 0. It does not exist as left
pair, therefore space should be extended for it. The fourth row is written adding constancy
to the ODE set. The right pair on the first row already exists as left pair. The middle
pair on second row already exists as left pair. The right pair on second row already exists
left pair. The middle pair on third row already exists as left pair. The right pair on third
row does not exist as left pair, therefore space should be extended for it. Observe (9). The
middle pairs and right pairs of the first three rows take part in all space extensions. Using
the heuristic, repartitioning will be performed. Observe row 5. We know that we want to
write an equation for 2, 0. Therefore that is our left pair. Then decrement the first number
of the left pair by 1 and add it to the sum of the middle pair and the right pair of row 1. The
result would be 1, 1. Using the heuristic, partition it and write the middle pair and right
pair of row 5. Then we need to decrement the right number of 2, 0. However, it is already 0
and therefore cannot be decremented. So, the equation for 2, 0 is complete. Also, now, all
the middle pairs and right pairs also exist as a left pair. Therefore, the space extension is
complete. There are 4 unique left pairs which means that the new ODE set has 4 equations
in total. This space extension is also the optimal space extension. The branch-and-bound
search also yields this particular space extension with 4 equations.

Example 2.5. Let us consider the ODE set given by [1, 0, 50, 50, 50, 50, 0, 1, 0, 0, 1, 0,
0, 1, 1, 0, 2, 0]. Here we have very high powers on the right hand side of the first equation.
Let 𝑥(𝑡) and 𝑦(𝑡) be the first and the second function respectively. Let

𝑢(𝑘,ℓ) ≡ 𝑥𝑘𝑦ℓ.

Then, the equation set represented by the vector is

.
𝑢(1,0) = 𝑐1𝑢

(50,50)𝑢(50,50),
.
𝑢(0,1) = 𝑐2𝑢

(0,0)𝑢(1,0) + 𝑐3𝑢
(1,0)𝑢(2,0),

where 𝑐 coefficients are nonzero scalars. Using beam search, purely second degree right hand
sides were obtained with an ODE set of 303 equations. In this ODE set, there are 898
additive right hand side terms in total. Table 4 shows the first 11 of these 898 right hand
side terms of the new ODE set. We do not know if this is the optimal space extension.
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T a b l e 4. Space extension of [1, 0,
50, 50, 50, 50, 0, 1, 0, 0, 1, 0, 0, 1,
1, 0, 2, 0]

Ind.
ODE

Left P Middle P Right P

1 1, 0 50, 50 50, 50
2 0, 1 0, 0 1, 0
3 0, 1 1, 0 2, 0
4 50, 50 74, 75 75, 75
5 50, 50 25, 24 26, 25
6 50, 50 26, 24 27, 25
7 0, 0 0, 0 0, 0
8 2, 0 50, 50 51, 50
9 74, 75 86, 87 87, 88
10 74, 75 37, 37 38, 37
11 74, 75 38, 37 39, 37
...

...
...

...

T a b l e 5. Total number of equations after space ex-
tension for van der Pol (Example 2.3), classical quartic
anharmonic oscillator (Example 2.4) and [1, 0, 50, 50, 50,
50, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 2, 0] (Example 2.5). H1, H2
and H3 are Heuristic 1, Heuristic 2 and Heuristic 3 respec-
tively

Equation
Heuristic

H1 H2 H3

Van der Pol 4 6 4
Anharmonic oscillator 4 5 4
High powers 303 303 491

We have also tried different heuristics that also satisfy the idea of partitioning in the
middle. In the aforementioned examples, the heuristic is

𝑞1𝑝1 = (𝑞0𝑝1)× (𝑞1𝑝0),

𝑞𝑘𝑝ℓ =
(︀
𝑞⌊𝑘/2⌋𝑝⌊ℓ/2⌋

)︀
×
(︀
𝑞𝑘−⌊𝑘/2⌋𝑝ℓ−⌊ℓ/2⌋)︀ , (𝑘 ̸= 1) ∨ (ℓ ̸= 1).

Let us name the heuristic above as Heuristic 1 (or H1). Also, let Heuristic 2 (or H2) be

𝑞𝑘𝑝ℓ =
(︀
𝑞⌊𝑘/2⌋𝑝⌊ℓ/2⌋

)︀
×

(︀
𝑞𝑘−⌊𝑘/2⌋𝑝ℓ−⌊ℓ/2⌋)︀ , 𝑘 = 0, 1, 2, . . . , ℓ = 0, 1, 2, . . .

and let Heuristic 3 (or H3) be

𝑞𝑘𝑝ℓ =
(︀
𝑞⌊𝑘/2⌋𝑝⌈ℓ/2⌉

)︀
×

(︀
𝑞𝑘−⌊𝑘/2⌋𝑝ℓ−⌈ℓ/2⌉)︀ , 𝑘 = 0, 1, 2, . . . , ℓ = 0, 1, 2, . . . .

These three heuristics were utilized with the equation sets in examples 2.3–2.5. The total
number of equations are shown in Table 5.

Table 5 shows that the heuristic matters. Heuristic 1 is the best heuristic for these
examples. In general, Heuristic 1 does not always give the optimal space extension. On
the other hand, it can be shown that Heuristic 1 always gives a valid conicalization (not
necessarily optimal space extension). Also, it is important to mention that it is possible to
increase the chance of finding the optimal space extension by using beam search where the
search parameter 𝑤 > 1. That means, looking at more parts of the tree by possibly taking
more than one path from each node.

2.3. Implementation

For implementation, C++ programming language is used. The ODE set is represented
through the vector data structure. Space extension is modeled through the arithmetic of
the integers within the vector of integers. Space extension corresponds to augmentation of
the vector of integers. Each sextuple in the vector represents a single additive term. Within
each sextuple, left pair is the left hand side of the equation, whereas the middle pair and the
right pair are the multiplicands within the term at the right hand side.
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2.4. Starting out with more than two equations

The approach can be generalized to start with more than two equations. To start with 𝑛
equations and 𝑛 unknowns, the representation is as follows

𝑢(ℓ1,ℓ2,...,ℓ𝑛)(𝑡) ≡ 𝑥1(𝑡)
ℓ1𝑥2(𝑡)

ℓ2 . . . 𝑥𝑛(𝑡)
ℓ𝑛 , ℓ1, ℓ2, . . . , ℓ𝑛 ∈ N,

where whole set will be represented through the functions above. The tuple representation
is given in Table 6.

The heuristic for this multidimensional case is given as follows. Again, we will distinguish
the situation where there are 1s and where there are not. In the beginning also, the set should
be rewritten (integers should be repartitioned) according to the heuristic. If the powers do
not include 1, the heuristic is

𝑥𝑝1
1 𝑥𝑝2

2 . . . 𝑥𝑝𝑛
𝑛 =

(︁
𝑥
⌊𝑝1/2⌋
1 𝑥

⌊𝑝2/2⌋
2 . . . 𝑥⌊𝑝𝑛/2⌋

𝑛

)︁
×
(︁
𝑥
𝑝1−⌊𝑝1/2⌋
1 𝑥

𝑝2−⌊𝑝2/2⌋
2 . . . 𝑥𝑝𝑛−⌊𝑝𝑛/2⌋

𝑛

)︁
,

𝑝𝑗 ̸= 1, 𝑗 = 1, . . . , 𝑛

and if there are the values 1, the situation is different. We need to count the occurrences of
1s from left to right. If it is the first, third, etc. occurrence, then we perform floor operation.
If it is the second, fourth, etc. occurrence, then we perform the ceiling operation. This
heuristic is also consistent with what we have done for the two-dimensional case. Therefore,

𝑥𝑝1
1 𝑥𝑝2

2 . . . 𝑥𝑝𝑛
𝑛 =

(︁
𝑥
ℒ(𝑝1/2)
1 𝑥

ℒ(𝑝2/2)
2 . . . 𝑥ℒ(𝑝𝑛/2)

𝑛

)︁
×
(︁
𝑥
𝑝1−ℒ(𝑝1/2)
1 𝑥

𝑝2−ℒ(𝑝2/2)
2 . . . 𝑥𝑝𝑛−ℒ(𝑝𝑛/2)

𝑛

)︁
(10)

is used where the operator is defined as

ℒ(𝑝𝑘/2) = ⌊𝑝𝑘/2⌋,
(𝑝𝑘 ̸= 1) ∨ ((𝑝𝑘 = 1) ∧ it is the occurrence 1, 3, 5, . . .),

𝑘 = 1, 2, . . . , 𝑛,

ℒ(𝑝𝑘/2) = ⌈𝑝𝑘/2⌉,
((𝑝𝑘 = 1) ∧ it is the occurrence 2, 4, 6, . . .),

𝑘 = 1, 2, . . . , 𝑛.

As a notation convention, if the left hand side tuple representation is all 0s, the two right
hand side tuple representations will also be all 0s. Actually, all 0s in a tuple means a nonzero
constant function, but for the constancy adding space extension, the zero constant function
is also represented in the same way.

Example 2.6. The Henon –Heiles ODE is an explicit ODE with multinomial right hand
sides. It is given by .

𝑥 = 𝑝𝑥,
.
𝑝𝑥 = −𝑥− 2𝜆𝑥𝑦,

.
𝑦 = 𝑝𝑦,

.
𝑝𝑦 = −𝑦 − 𝜆𝑥2 + 𝜆𝑦2

T a b l e 6. Representation of multinomials

Tuple representation Function representation

𝑝1, 𝑝2, . . . , 𝑝𝑛−1, 𝑝𝑛 𝑥𝑝11 𝑥𝑝22 . . . 𝑥
𝑝𝑛−1

𝑛−1 𝑥
𝑝𝑛
𝑛
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T a b l e 7. Space extension of Henon –Heiles ODE

Ind.
ODE

Left Q Middle Q Right Q

1 1, 0, 0, 0 0, 0, 0, 0 0, 1, 0, 0
2 0, 1, 0, 0 0, 0, 0, 0 1, 0, 0, 0
3 0, 1, 0, 0 0, 0, 1, 0 1, 0, 0, 0
4 0, 0, 1, 0 0, 0, 0, 0 0, 0, 0, 1
5 0, 0, 0, 1 0, 0, 0, 0 0, 0, 1, 0
6 0, 0, 0, 1 1, 0, 0, 0 1, 0, 0, 0
7 0, 0, 0, 1 0, 0, 1, 0 0, 0, 1, 0
8 0, 0, 0, 0 0, 0, 0, 0 0, 0, 0, 0

consisting of four equations and four unknowns [11]. Now, each function will be a quadruple
(a sequence of four integers). Each additive term will be represented with three quadruples:
a quadruple for the left hand side, a quadruple for the first multiplicand of the right hand
side term and a quadruple for the second multiplicand of the right hand side term. Let

𝑢(𝑘,ℓ,𝑚,𝑛) ≡ 𝑥𝑘𝑝ℓ𝑥𝑦
𝑚𝑝𝑛𝑦

then the equation can be rewritten as

.
𝑢(1,0,0,0) = 𝑢(0,0,0,0)𝑢(0,1,0,0),

.
𝑢(0,1,0,0) = 𝑢(0,0,0,0)𝑢(1,0,0,0) + 𝑢(0,0,1,0) 𝑢(1,0,0,0),

.
𝑢(0,0,1,0) = 𝑢(0,0,0,0)𝑢(0,0,0,1),

.
𝑢(0,0,0,1) = 𝑢(0,0,0,0)𝑢(0,0,1,0) + 𝑢(1,0,0,0)𝑢(1,0,0,0) + 𝑢(0,0,1,0)𝑢(0,0,1,0)

using the heuristic in (10). The equation set is shown in the first seven rows of Table 7. The
next step is to look at the middle and right quadruples row by row. If the quadruple does
not exist as a left quadruple, space should be extended, adding new rows to the table. The
middle quadruple of the first row does not exist as a left quadruple, therefore space should
be extended for it. Since it is all 0s, it is the constancy adding space extension. Therefore
a row with all 0s is appended to the table to form the eighth row of the table. The other
middle quadruples and right quadruples exist as a left quadruple, therefore space extension
is complete. This space extension is also the optimal space extension.

Concluding remarks

Beam search was utilized for obtaining an ODE set with purely second degree right hand
side functions. In order to improve the chance of hitting a better space extension by covering
more ground, it is possible to increase the beam search parameter from 1 to a higher integer.
That means, at each node, instead of choosing the best path, choose the best 𝑤 paths, and
take all of the 𝑤 paths into account.

Acknowledgements. The author would like to thank Metin Demiralp for fruitful discussions
during the preparation of the manuscript.
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Аннотация

Расширение пространства для явных ОДУ заключается во введении новых уравнений в на-
бор уравнений, где новые неизвестные функционально зависят от исходных неизвестных. Цель
состоит в том, чтобы преобразовать набор ОДУ в форму, которая имеет чисто полиноми-
альные правые части второй степени. Это необходимый шаг предварительной обработки для
ряда некоторых методов решения. Полиномиальные ОДУ могут быть преобразованы в ОДУ
с членами чисто второй степени посредством пространственного расширения. В предыдущей
работе показано, что расширение пространства с наименьшим числом новых неизвестных мо-
жет быть найдено полным перебором. Однако полный поиск неэффективен в вычислительном
отношении. В этой статье используется эффективный в вычислительном отношении поиск (по-
иск луча), но оптимальность (наименьшее количество новых неизвестных) не гарантируется.
Численные эксперименты показывают, что поиск луча помогает найти полезное расширение
пространства даже для многочленов с относительно более высокими степенями.
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